[1] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[J]. Econometrica, 1982, 50(4): 987-1007. [2] Bollerslevb T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. [3] Baillie R T, Degennaro R P. Stock returns and volatility[J]. Journal of Financial & Quantitative Analysis, 1990, 25(2): 203-214. [4] Santis G D, IMrohorogˇlu S. Stock returns and volatility in emerging financial markets[J]. Discussion Paper, 1994,16(4): 561-579. [5] Singhal S, Ghosh S. Returns and volatility linkages between international crude oil price, metal and other stock indices in India: evidence from VAR-DCC-GARCH models[J]. Resources Policy, 2016, 50: 276-288. [6] Nandan T, Agrawal P K, Agarwal T. Return, volatility, and Volume: causality relationship of Top 10 companies of nifty 50[J]. 2016. [7] Ghysels , Gouriéroux C, Jasiak J. Causality between returns and traded volumes[J]. Annales Déconomie Et De Statistique, 2000(60): 189-206. [8] Kamath R, Wang Y. The causality between stock index returns and volumes in the asian equity markets[J]. Journal of International Business Research, 2006,5. [9] Nandan T, Agrawal P K, Agarwal T. Return, volatility, and volume: causality relationship of top 10 companies of nifty 50[J]. 2016. [10] Sampath A, Garg P. Contemporaneous and causal relationship between returns and volumes: evidence from nifty futures[J]. International Review of Finance, 2018. [11] Lin E C, Jalbert T. The effect of dow jones industrial average index component changes on stock returns and trading volumes[J]. International Journal of Business & Finance Research, 2018, 12(1). [12] 范从来,徐科军.中国股票市场收益率与交易量相关性的实证分析[J].管理世界,2002(7):31-36. [13] 叶舟,李忠民,叶楠.期货市场交易量与收益率及其波动关系的实证研究——ARMA—EGARCH—M模型的应用[J].系统工程,2005,23(4):28-34. [14] 郑方镳,吴超鹏,吴世农.股票成交量与收益率序列相关性研究——来自中国股市的实证证据[J].金融研究,2007(3a):140-150. [15] 任燕燕,李劭珉.中国股市收益率与成交量动态关系的研究——基于工具变量的分位数回归(IVQR)模型[J].中国管理科学,2017,25(8):11-18. [16] 洪晔.中国股指期货收益率波动性与交易量、持仓量的关系探究[D].复旦大学,2013: [17] 王苏生,王俊博,许桐桐,等.基于ARMA-GARCH-SN模型的沪深300股指期货日内波动率研究与预测[J].运筹与管理,2018(4). [18] Quah D, Vahey S P. Measuring core inflation[J]. Economic Journal, 1995, 105(432): 1130-1144. [19] 王苏生,王俊博,李光路.基于ARMA模型的沪深300股指期货高频数据收益率研究与预测[J].华北电力大学学报(社会科学版),2018(3). |