[1] BIRJALI M, KASRI M, BENI-HSSANE A. A comprehensive survey on sentiment analysis: Approaches, challenges and trends[J]. Knowledge-Based Systems, 2021, 226: 107134. [2] PANDEY A C, KULHARI A, SHUKLA D S. Enhancing sentiment analysis using Roulette wheel selection based cuckoo search clustering method[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(1): 1-29. [3] ZHENG L J, WANG H W, SONG G. Sentimental feature selection for sentiment analysis of Chinese online reviews[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(1): 75-84. [4] KOU G, YANG P, PENG Y, et al. Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods[J]. Applied Soft Computing, 2020, 86: 105836. [5] GARG M. UBIS: Unigram Bigram importance score for feature selection from short text[J]. Expert Systems with Applications, 2022, 195: 116563. [6] 李平,戴月明,王艳.基于混合卡方统计量与逻辑回归的文本情感分析[J].计算机工程,2017,43(12):192-196. [7] 唐加山,段丹丹.文本分类中基于CHI和PCA混合特征的降维方法[J].重庆邮电大学学报(自然科学版),2022,34(1):164-171. [8] HAN Y, LIU Y H, JIN Z G. Sentiment analysis via semi-supervised learning: A model based on dynamic threshold and multi-classifiers[J]. Neural Computing and Applications, 2020, 32(9): 5117-5129. [9] YE X, DAI H X, DONG L A, et al. Multi-view ensemble learning method for microblog sentiment classification[J]. Expert Systems with Applications, 2021, 166: 113987. [10] 周锦峰,叶施仁,王晖.基于深度卷积神经网络模型的文本情感分类[J].计算机工程,2019,45(3):300-308. [11] SHARFUDDIN A A, TIHAMI M N, ISLAM M S. A deep recurrent neural network with bilstm model for sentiment classification[C]//2018 International Conference on Bangla Speech and Language Processing (ICBSLP),September 21-22,2018, Sylhet,Bangladesh. IEEE, 2018: 1-4. [12] 胡荣磊,芮璐,齐筱,等.基于循环神经网络和注意力模型的文本情感分析[J].计算机应用研究,2019,36(11):3282-3285. [13] TRIPATHY A, AGRAWAL A, RATH S K. Classification of sentiment reviews using n-gram machine learning approach[J]. Expert Systems with Applications, 2016, 57: 117-126. [14] 游凤芹,钟芳,周展.中文多类别情感分类模型中特征选择方法[J].计算机应用,2016,36(A02):242-246. [15] GUO A Z, YANG T. Research and improvement of feature words weight based on TFIDF algorithm[C]//2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, May 20-22, 2016, Chongqing, China. IEEE, 2016: 415-419. [16] 邵晓根,鞠训光,胡局新,等.基于改进权重的贝叶斯推理和TFIDF算法文本主题词提取研究[J].南京师大学报:自然科学版,2014,37(1):57-60. [17] KUNCHEVA L I. Combining Pattern Classifiers: Methods and Algorithms[M]. John Wiley & Sons, Inc., 2004. [18] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. [19] MOHANDES M, DERICHE M, ALIYU S O. Classifiers combination techniques: A comprehensive review[J]. IEEE Access, 2018, 6: 19626-19639. [20] YANG J B, XU D L. Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205: 1-29. [21] LIU Z G, PAN Q, DEZERT J, et al. Combination of classifiers with optimal weight based on evidential reasoning[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1217-1230. [22] 姜杰,夏睿.机器学习与语义规则融合的微博情感分类方法[J].北京大学学报 (自然科学版),2017,53(2):247-254. |