SHAN Erfang, ZENG Manchang. An Alternative Axiomatic Characterization of the Efficient Quotient Myerson Value[J]. Operations Research and Management Science, 2023, 32(3): 92-96.
[1] BRANZEI R, DIMITROV D, TIJS S. Models in cooperative game theory[M]. Berlin: Springer, 2008. [2] MYERSON R B. Graphs and cooperation in games[J]. Mathematics of Operations Research, 1977, 2(3): 225-229. [3] SHAPLEY L S. A value for n-person games[M]//Tucker A W, Kuhn H W. Contributions to the Theory of Games II. Princeton: Princeton University Press, 1953: 307-317. [4] SLIKKER M, VAN DEN NOUWELAND A. Social and economic networks in cooperative game theory[M]. New York: Springer, 2001. [5] SHAN E F, ZHANG G, SHAN X. The degree value for games with communication structure[J]. International Journal of Game Theory, 2018, 47: 857-871. [6] VANDEN BRINK R, KHMELNITSKAYA A, VANDER LAAN G. An efficient and fair solution for communication graph games[J]. Economics Letters, 2012, 117(3): 786-789. [7] BEAL S, CASAJUS A, HUETTNER F. Efficient extensions of the Myerson value[J]. Social Choice and Welfare, 2015, 45(4): 819-827. [8] CASAJUS A. An efficient value for TU games with a cooperation structure[R]. Working paper, Universität Leipzig, Germany, 2007. [9] HU X F, LI D F, XU G J. Fair distribution of surplus and efficient extensions of the Myerson value[J]. Economics Letters, 2018, 165: 1-5. [10] SHAN E F, HAN J, SHI J L. The efficient proportional Myerson values[J]. Operations Research Letters, 2019, 47(6): 574-578. [11] 单而芳,谢娜娜,张广.基于平均树值的无圈图博弈有效解[J].运筹与管理,2017,26(10):20-26. [12] 单而芳,史纪磊,吕文蓉,等.具有图限制通信结构对策的有效Owen值[J].中国科学:数学,2020,50(9):1219-1232. [13] 单而芳,曾晗,韩佳玉.无圈超图对策上的有效平均树解[J].系统工程理论与实践,2021,41(3):781-789. [14] LI D L, SHAN E F. Efficient quotient extensions of the Myerson value[J]. Annals of Operations Research, 2020, 292(1): 171-181.