[1] NOWAK M A, PAGE K M, SIGMUND K. Fair-ness versus reason in the ultimatum game[J]. Science, 2000, 289: 1773-1775. [2] POUNDSTONE W. Prisoner's dilemma[M]. New York: Random House, 2011. [3] CORELY H, KWAIN P. A cooperative dual to the Nash equilibrium for two person prescriptive games[J]. Journal of Applied Mathematics, 2014, 2014: 1-4. [4] 吕俊娜,刘伟,邹庆,等.轨道交通SBOT项目特许期的合作博弈模型研究[J].管理工程学报,2016,30(3):209-215. [5] 胡本勇,张家维.基于收益共享的移动App供应链合作的博弈分析[J].管理工程学报,2020,34(5):137-144. [6] BEN-TAL A, NEMIROVSKI A. Robust convex optimization[J]. Mathematics of Operations Research, 1998, 23(4): 769-805. [7] El GHAOUI L, LEBERT H. Robust solutions toleast-squares problems with uncertain datamatrices[J]. SIAM Journal of Matrix Aanlysis andApplication, 1997, 18(4): 1035-1064. [8] AGHASSI M, BERTSIMAS D. Robust game theory[J]. Mathematical Programming, 2006, 107: 231-273. [9] YAMASHITA N, HAYASHI S, FUKUSHIMA M. Robust Nash equilibria and second orderconecomplementarity problems[J]. Journal of Nonlinear and Convex Analysis, 2005, 6: 283-296. [10] FUKUSHIMA M, LUO Z, TSENG P. Smoothing functions for secondorder cone complement-arity problems[J]. SIAM Journal on optimization, 2001, 12: 436-460. [11] FACCHINEI F, PANG J. Finite-dimensionalvariational inequalities and complementarityproblems[M]. New York: Springer, 2003. [12] FREUND R, ORDOÓÑEZ F. On an extension of conditional numbertheory to nonconicconic convex optimization[J]. Mathimatics of Operations Research, 2005, 30: 173-194. [13] BERTSIMAS D, SIM M. Tractable approximattions to robust conic optimizationproblems[J]. Mathematical Programming, 2006, 107: 5-36. [14] HAYASHI S, YAMASHITA N, FUKUSHIMA M. A combined smoothing and regularzation method formonotone second-order cone complementarity problems[J]. SIAM Journal on optimization, 2005, 15(2): 593-615. |