[1] SELTEN R, RUBINSTEIN A, DAMME E V. Nash Equilibrium and the History of Economic Theory[M]. 1999. [2] DREU C, GIACOMANTONIO M, GIFFIN M R, et al. Psychological constraints on aggressive predation in economic contests[J]. Journal of Experimental Psychology General, 2019, 148(10): 1767-1781. [3] BHATTI B A, BROADWATER R. Distributed nash equilibrium seeking for a dynamic micro-grid energy trading game with non-quadratic Payoffs[J]. Energy, 2020, 202: 117709. [4] ANTHROPELOS M, BOONEN T J. Nash equilibria in optimal reinsurance bargaining[J]. Insur. Math. Econ.2020, 93: 196-205. [5] FRAGKOS G, TSIROPOULOU E E, PAPAVASSILIOU S. Artificial intelligence enabled distributed edge computing for internet of things applications[C]//2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). Marina del Rey, 450-457. [6] ROUGHGARDEN T. Computing equilibria: a computational complexity perspective[J]. Economic Theory, 2010, 42(1): 193-236. [7] PARK J B, KIM J H, JUNG M H, et al. A continuous strategy game for power transactions analysis in competitive electricity markets[J]. Power Systems, IEEE Transactions on, 2001, 16(4): 847-855. [8] SONG Y, NI Y, WEN F, et al. Conjectural variation based bidding strategy in spot markets: fundamentals and comparison with classical game theoretical bidding strategies[J]. Electric Power Systems Research, 2003, 67(1): 45-51. [9] WEBER J D, OVERBYE T J. A two-level optimization problem for analysis of market bidding strategies[C]//Proceeding of the IEEE Power Engineering Society Summer Meeting, Edmondon, Alberta, July 1999: 682-687. [10] FANZERES B, STREET A, POZO D. A column-and-constraint generation algorithm to find nash equilibrium in pool-based electricity markets[J]. Electric Power Systems Research, 2020, 189: 106806. [11] LEE K H, BALDICK R. Tuning of discretization in bimatrix game approach to power system market analysis[J]. Power Systems, IEEE Transactions on, 2003, 18(2): 830-836. [12] SON Y S, BALDICK R. Hybrid coevolutionary programming for Nash equilibrium search in games with local optima[J]. Evolutionary Computation, IEEE Transactions on, 2004, 8(4): 305-315. [13] PEYDAYESH M. A PSO based algorithm for finding global nash equilibrium[C]//Power and Energy Society General Meeting, 2010 IEEE. IEEE, 2010: 1-6. [14] ARROW K J, DEBREU G. Existence of an equilibrium for a competitive economy[J]. Econometrica, 1954,22: 265-290. [15] HARKER P T. Generalized nash games and quasi-variational inequalities[J]. European Journal of Operational Research, 1991, 54(1): 81-94. [16] AUSSEL D, SULTANA A, VETRIVEL V. On the existence of projected solutions of quasi-variational inequalities and generalized nash equilibrium problems[J]. Journal of Optimization Theory and Applications, 2016,170(3): 818-837. [17] LIU P, FU Z, CAO J, et al. A decentralized strategy for generalized Nash equilibrium with linear coupling constraints[J]. Mathematics and Computers in Simulation, 2020, 171(C): 221-232. [18] FUKUSHIMA M. Restricted generalized Nash equilibria and controlled penalty algorithm[J]. Computational Management ence, 2011, 8(3): 201-218. [19] XIU N, ZHANG J. Some recent advances in projection-type methods for variationalinequalities[J]. Journal of Computational & Applied Mathematics, 2003, 152(1-2): 559-585. [20] FACCHINEI F, KANZOW C. Penalty methods for the solution of generalized Nash equilibrium problems[J]. SIAM Journal on Optimization, 2010, 20(5): 2228-2253. [21] 许吉祥,侯剑,谭彦华,等.求解广义纳什均衡问题的指数型惩罚函数方法[J].运筹与管理,2015,24(1):81-88. [22] NIKAIDÔ H, ISODA K. Note on non-cooperative convex game[J]. Pacific Journal of Mathematics, 1955, 5(1): 807-815. [23] STORN R, PRICE K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[M]. Berkeley: ICSI, 1995. [24] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimizationover continuous spaces[J]. Journal of global optimization, 1997, 11(4): 341-359. [25] KOH A. An evolutionary algorithm based on nash dominance for equilibrium problems with equilibrium constraints[J]. Applied Soft Computing, 2012, 12(1): 161-173. [26] ZAMAN F, ELSAYED S M, RAY T, et al. Evolutionary algorithms for finding nash equilibria in electricity markets[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(4): 536-549. [27] PU X, MA J. Complex dynamics and chaos control in nonlinear four-oligopolist game with different expectations[J]. International Journal of Bifurcation and Chaos, 2013, 23(3): 1350053. [28] ZHANG J, QU B, XIU N. Some projection-like methods for the generalized Nash equilibria[J]. 2010, 45(1): 89-109. [29] 陈盼华.广义纳什均衡的一类优化方法[D].郑州:郑州大学,2015. [30] HAN D, ZHANG H, QIAN G, et al. An improved two-step method for solving generalized Nash equilibrium problems[J]. European Journal of Operational Research, 2012, 216(3): 613-623. |