[1] Li Y. A fault prediction and cause identification approach in complex industrial processes based on deep learning[J]. Computational Intelligence and Neuroscience, 2021: 1-13. [2] Kim S, Sukchotrat T, Park S. A nonparametric fault isolation approach through one-class classification algorithms[J]. Iie Transactions, 2011, 43(7): 505-517. [3] Runger G. Projections and the U2 multivariate control chart[J]. Journal of Quality Technology, 2012, 28(3): 313-319. [4] Phaladiganon P, Kim S, Chen V, et al. Principal component analysis-based control charts for multivariate nonnormal distributions[J]. Expert Systems with Applications, 2013, 40(8): 3044-3054. [5] Jiang W, Wang K, Tsung F. A variable-selection-based multivariate EWMA chart for process monitoring and diagnosis[J]. Journal of Quality Technology, 2012, 44(3): 209-230. [6] Liu H, Jiang W, Tangirala A, et al. An adaptive regression adjusted monitoring and fault isolation scheme[J]. Journal of Chemometrics, 2010, 20(6-7): 280-293. [7] 王宁,闫娜,徐友真,等.复杂多工序制造过程关键质量特性识别[J].统计与决策,2021,37(8):177-180. [8] 封晓斌,汤易兵,吴增源,徐明江.基于SRFML-Lift的流程制造产品质量状态监测[J].中国管理科学,2021,29(12):227-236. [9] 宫华,李作华,刘洪涛,等.基于改进PSO-BP神经网络的贮存可靠性预测[J].运筹与管理,2020,29(8):105-111. [10] You D, Gao X, Katayama S. WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 628-636. [11] 黄志强,李军.基于卷积神经网络的图像识别研究综述[J].汽车工程师,2020(10):11-13,31. [12] 邓婕,李舜酩.基于深度学习的故障诊断方法研究综述[J].电子测试,2020,(18):43-47,51. [13] He K, Zhang X, Ren S. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [14] 王洋,杨立.基于Faster R-CNN的旋转机械红外检测与识别[J].红外技术,2020,335(11):41-48. [15] Tueker I, Serkan K, Levent Eren, et al. Real-time motor fault detection by 1-D convolutional neural networks[J]. IEEE Transations on industrial electronics, 2016, 63(11): 7056-7074. [16] 孙锴,高建民,高智勇,等.基于故障图谱的企业级故障模式识别方法[J].计算机集成制造系统,2015,21(2):519-527. [17] 肖雄,肖宇雄,张勇军,等.基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J].中国电机工程学报,2021,41(2):738-749. [18] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7): 2121-2159. [19] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(7):1-23. [20] 周昊飞,刘玉敏.基于深度置信网络的大数据制造过程实时智能监控[J].中国机械工程,2018,29(10): 1201-1207,1213. [21] Robinson M, Manry M, Malalur S. et al. Properties of a batch training algorithm for feedforward networks[J]. Neural Processing Letters, 2017, 45(3): 841-854. |