[1] Cerchiello P, Giudici P, Nicola G. Twitter data models for bank risk contagion[J]. Neurocomputing, 2017, 264: 50-56. [2] Li B, Chan K C C, Ou C, Sun R. Discovering public sentiment in social media for predicting stock movement of publicly listed companies[J]. Information Systems, 2017, 69: 81-92. [3] 刘超,李元睿,姜超,等.中国证券公司系统性风险测度及演化特征研究——来自20家上市证券公司的数据[J].中国管理科学,2019(5):11-22. [4] 吴成颂,汪翔宇.市场竞争、商业银行金融创新与银行业系统性风险——基于14家商业银行的实证研究[J].经济与管理评论,2019,35(2):120-129. [5] Oreski S, Oreski G. Genetic algorithm-based heuristic for feature selection in credit risk assessment[J]. Expert systems with applications, 2014, 41(4): 2052-2064. [6] De Andrés J, Lorca P, de Cos Juez F J, Sanchez-Lasheras F. Bankruptcy forecasting: a hybrid approach using fuzzy c-means clustering and multivariate adaptive regression splines(MARS)[J]. Expert Systems with Applications, 2011, 38(3): 1866-1875. [7] 李元睿.多目标进化聚类算法及其在信用风险管理的应用[D].北京工业大学,2019. [8] Rahmani M, Atia G K. Subspace clustering via optimal direction search[J]. IEEE Signal Processing Letters, 2017, 24(12): 1793-1797. [9] Deng Z, Choi K S, Chung F L, Wang S. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern Recognition, 2010, 43(3): 767-781. [10] Rahmani M, Atia G K. Innovation pursuit: a new approach to subspace clustering[J]. IEEE Transactions on Signal Processing, 2017, 65(23): 6276-6291. [11] Javed S, Mahmood A, Bouwmans T, Jung S K. Background-foreground modeling based on spatiotemporal sparse subspace clustering[J]. IEEE Transactions on Image Processing, 2017, 26(12): 5840-5854. [12] Groll L, Jakel J. A new convergence proof of fuzzy c-means[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(5): 717-720. [13] Maulik U, Bandyopadhyay S, Mukhopadhyay A. Multiobjective genetic algorithms for clustering: applications in data mining and bioinformatics[M]. Springer Berlin Heidelberg, 2011. [14] Kriegel H P, Kröger P, Zimek A. Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering[J]. ACM Transactions on Knowledge Discovery from Data(TKDD), 2009, 3(1): 1-58. [15] Masulli F, Rovetta S. Clustering high-dimensional data[C]//Revised Selected Papers of the First International Workshop on Clustering High——Dimensional Data. Springer-Verlag New York, Inc. 2012: 1-13. [16] Jing L, Ng M K, Huang J Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J]. IEEE Transactions on knowledge and data engineering, 2007, 19(8): 1026-1041. [17] Gordon A D, Vichi M. Fuzzy partition for fitting a set of partitions[J]. Psychometrika, 2001, 66(2): 229-247. [18] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. [19] Jain H, Deb K. An evolutionary many-objective optimization algorithm Using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622. [20] Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello C. Survey of multiobjective evolutionary algorithms for data mining: Part II[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(1): 20-35. [21] Mukhopadhyay A, Maulik U, Bandyopadhyay S. A survey of multiobjective evolutionary clustering[J]. ACM Computing Surveys (CSUR), 2015, 47(4): 61. [22] Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[M]. IEEE Press, 2007. [23] 王娟.商业信用融资对股价崩盘风险的影响——基于债务治理效应视角[J].经济与管理评论,2019,35(3):110-121. [24] Bezdek J C, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2-3): 191-203. [25] Lloyd S. Least squares quantization in PCM[J]. IEEE transactions on information theory, 1982, 28(2): 129-137. [26] Xia H, Zhuang J, Yu D. Novel soft subspace clustering with multi-objective evolutionary approach for high-dimensional data[J]. Pattern Recognition, 2013, 46(9): 2562-2575. [27] Rand W M. Objective criteria for the evaluation of clustering methods[J]. Journal of the American Statistical association, 1971, 66(336): 846-850. [28] Liu J, Mohammed J, Carter J, Ranka S. Distance-based clustering of CGH data[J]. Bioinformatics, 2006, 22(16): 1971-1978. [29] Liu X, Cheng H M, Zhang Z Y. Evaluation of community detection methods[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(4): 1-11. |