-
基于VMD-ELM的农产品期货价格分解集成预测模型
- 张大斌, 曾莉玲, 凌立文
-
2023, 32(1):
127-133.
DOI: 10.12005/orms.2023.0021
-
摘要
(
)
PDF (1736KB)
(
)
-
参考文献 |
相关文章 |
计量指标
为了捕捉农产品市场期货价格波动的复杂特征,进一步提高其预测精度,基于分解集成的思想,构建包含变分模态分解(VMD)和极限学习机(ELM)的分解集成预测模型。首先,利用VMD分解的自适应性和非递归性,选择VMD将复杂时间序列分解成多个模态分量(IMF)。其次,针对VMD分解关键参数模态数K的选取难题,提出基于最小模糊熵准则寻找最优K值的方法,有效避免模态混淆和端点效应问题,从而提升VMD的分解能力。最后,利用ELM强大的学习能力和泛化能力,对VMD分解得到的不同尺度子序列进行预测,集成得到最终预测结果。以CBOT交易所稻谷、小麦、豆粕期货价格作为研究对象,实证结果表明,该分解集成预测模型在预测精度和方向性指标上,显著优于单预测模型和其它分解集成预测模型,为农产品期货价格预测提供了一种新途径。