运筹与管理 ›› 2020, Vol. 29 ›› Issue (9): 82-88.DOI: 10.12005/orms.2020.0230

• 理论分析与方法探讨 • 上一篇    下一篇

产业集群协同创新知识共享策略的微分博弈研究

马永红1,2, 刘海礁1, 柳清3   

  1. 1. 哈尔滨工程大学 经济管理学院, 黑龙江 哈尔滨 150001;
    2. 哈尔滨工程大学 企业创新研究所, 黑龙江 哈尔滨 150001;
    3. 哈尔滨工业大学 建筑学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2017-11-02 出版日期:2020-09-25
  • 通讯作者: 刘海礁(1988-) 男, 黑龙江绥滨人, 博士研究生, 研究方向:科技创新与管理创新;
  • 作者简介:马永红(1971-), 女, 黑龙江肇州人, 教授, 博士生导师, 研究方向:科技创新与管理创新;柳清(1989-), 女, 黑龙江北安人, 研究方向:城乡可持续发展。
  • 基金资助:
    国家自然科学基金资助项目(71373060);国家社会科学基金重点资助项目(14AGL004);黑龙江省自然科学基金资助项目(14AGL004);黑龙江省社会科学基金资助项目(13D011)

Differential Game Study of Industrial Cluster Synergetic Innovation Knowledge Sharing Strategy

MA Yong-hong1, 2, LIU Hai-jiao1, LIU Qing3   

  1. 1. School of Economics and Management, Harbin Engineering University, Harbin 150001, China;
    2. Enterprise Innovation Research Institute, Harbin Engineering University, Harbin 150001, China;
    3. School of Architecture, Harbin Institute of Technology, Harbin 150001, China
  • Received:2017-11-02 Online:2020-09-25

摘要: 针对产业集群协同创新中核心企业和配套企业的知识共享问题, 通过构建微分博弈模型, 运用HJB方程分别考察三种知识共享博弈情形下核心企业和配套企业的最优知识共享策略。通过三种博弈结果的比较分析发现:Stackelberg主从博弈情形下, 知识共享投入补贴作为一种激励策略可促进配套企业知识共享意愿、双方各自知识共享收益以及双方知识共享总收益均优于Nash非合作情形;协同合作博弈情形下双方各自知识共享意愿、各自知识共享收益和双方知识共享总收益均优于非合作情形, 且收益分配系数α存在一个阈值, 可实现双方个体收益的帕累托最优。最后, 通过数值算例分析验证了理论推导的结果。

关键词: 产业集群, 协同创新, 知识共享, 微分博弈, HJB方程

Abstract: According to the knowledge sharing question of core enterprises and supporting enterprises in industrial cluster synergetic innovation, it analyses separately the knowledge sharing strategies of core enterprises and supporting enterprises in the case of three different knowledge sharing games using the HJB equation by constructing the differential game model. Comparing the three kinds of games analysis results, we find that: in the case of Stackelberg game, knowledge sharing input subsidy as a kind of incentive strategy can promote the knowledge sharing desire of supporting enterprises, the knowledge sharing revenue of each side and the total revenue of both sides are better than Nash game. In the case of cooperative game, the knowledge sharing desire, knowledge sharing revenue of each side and the total revenue of both sides are better than the non cooperative case. There is a threshold in the revenue distribution level coefficient, the Pareto optimality of both individual revenue can be achieved. Finally, the results of theoretical derivation are verified by numerical examples.

Key words: industrial cluster, synergetic innovation, knowledge sharing, differential game, HJB equation

中图分类号: