运筹与管理 ›› 2015, Vol. 24 ›› Issue (3): 120-126.DOI: 10.12005/orms.2015.0091

• 理论分析与方法探讨 • 上一篇    下一篇

三角直觉模糊决策的变权方法

余高锋1, 李登峰2, 邱锦明1   

  1. 1.三明学院 信息工程学院,福建 三明 365004;
    2.福州大学 管理学院,福建 福州 350108
  • 收稿日期:2013-10-09 出版日期:2015-06-12
  • 作者简介:余高锋(1986-) 男,助教,硕士,研究方向决策分析和博弈论等研究;李登峰( 1965-),男,广西人,教授,博导,研究方向决策与对策。
  • 基金资助:
    国家自然科学基金重点项目(71231003);国家自然科学基金项目(71171055,70871117);福建省自然基金项目(2012J012802;2015J01287);福建省教育厅科技项目(JA14295);福建省大学生创新创业训练计划项目(201311311023) 。

Variable-weight Based Method for Intuitionistic Triangular Fuzzy Decision Making

YU Gao-feng1, LI Deng-feng2, QIU Jin-ming   

  1. 1.School of Information, Sanming University, Sanming365004, China;
    2.School of Management, Fuzhou University, Fuzhou350108, China
  • Received:2013-10-09 Online:2015-06-12

摘要: 研究了属性值为三角直觉模糊数的多属性决策问题,提出了一种基于变权综合的决策方法。首先,针对三角直觉模糊数,提出一种新的三角直觉模糊排序方法;其次,定义了三角直觉模糊变权加权算术平均算子和三角直觉模糊变权加权几何平均算子;然后,提出一种基于三角直觉模糊变权集成算子的多属性决策方法;最后,数值算例说明了该方法的有效性。

关键词: 变权向量, 三角直觉模糊数, 决策, 集成算子

Abstract: For multi-attribute decision making problems where the attribute values are intuitionistic triangular fuzzy numbers, a new decision making method is developed on the basis of variable-weight vector. Firstly, the concept of triangular intuitionistic fuzzy numbers is introduced, and a new ranking method of triangular intuitionistic fuzzy numbers is presented. Secondly, the triangular intuitionistic fuzzy variable-weight weighted averaging operator and triangular intuitionistic fuzzy variable-weight weighted geometric averaging operator are proposed. Then, a method for multiple attribute decision making based on triangular intuitionistic fuzzy variable-weight aggregation operators is developed. Finally, an illustrative example shows the effectiveness of the proposed approach.

Key words: variable-weight vector, triangular intuitionistic fuzzy number, decision making, aggregation operators

中图分类号: