[1] LI Z Y, WANG W Y, YAN Y Y, et al. PS-ABC A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems[J]. Expert Systems With Applications, 2015, 42(22): 8881-8895. [2] RAHNAMAYAN S, WANG G G. Solving large scale optimization problems by opposition-based differential evolution (ODE)[J]. WSEAS Transactions on Computers, 2008, 7(10): 1792-1804. [3] 黄光球,李涛,陆秋琴.人工记忆优化算法[J].系统工程理论与实践,2014,34(11):2900-2912. [4] 龙文,蔡绍洪,焦建军,等.求解大规模优化问题的改进鲸鱼优化算法[J].系统工程理论与实践,2017,37(11):2983-2994. [5] SUN Y J, WANG X L, CHEN Y H, et al. A modified whale optimization algorithm for large-scale global optimization problems[J]. Expert Systems With Applications, 2018, 114: 563-577. [6] WANG H, LIANG M N, SUN C L, et al. Multiple-strategy learning particle swarm optimization for large-scale optimization problems[J]. Complex & Intelligent Systems, 2021, 7: 1-16. [7] TANG R. Decentralizing and coevolving differential evolution for large-scale global optimization problems[J]. Applied Intelligence, 2017, 47(4): 1208-1223. [8] MESELHI M A, ELSAYED S M, SARKER R A, et al. Contribution based co-evolutionary algorithm for large-scale optimization problems[J]. IEEE Access, 2020, 8: 203369-203381. [9] 陈暄,孟凡光,吴吉义.求解大规模优化问题的改进狼群算法[J].系统工程理论与实践,2021,41(3):790-808. [10] LONG W, JIAO J J, LIANG X M, et al. Inspired grey wolf optimizer for solving large-scale function optimization problems[J]. Applied Mathematical Modelling, 2018, 60: 122-126. [11] LI Y, ZHAO Y R, LIU J S. Dynamic sine cosine algorithm for large-scale global optimization problems[J]. Expert Systems with Applications, 2021, 177: 114950. [12] FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine Predators Algorithm: A nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377. [13] RAMEZANI M, BAHMANYAR D, RAZMJOOY N. A new improved model of Marine Predator Algorithm for optimization problems[J]. Arabian Journal for Science and Engineering, 2021, 46(9): 8803-8826. [14] OSZUST M. Enhanced Marine Predators Algorithm with local escaping operator for global optimization[J]. Knowledge-Based Systems, 2021, 232: 107467. [15] FAN Q S, HUANG H S, CHEN Q P, et al. A modified self-adaptive Marine Predators Algorithm: Framework and engineering applications[J]. Engineering with Computers, 2022, 38: 3269-3294. [16] YOUSRI D, ABD E M, OLIVA D, et al. Fractional-order comprehensive learning Marine Predators Algorithm for global optimization and feature selection[J]. Knowledge-Based Systems, 2022, 235: 107603. [17] HU G, ZHU X, WEI G, et al. An improved Marine Predators Algorithm for shape optimization of developable Ball surfaces[J]. Engineering Applications of Artificial Intelligence, 2021, 105: 104417. [18] HAUPT R L, HAUPT S E. Practical Genetic Algorithms[M]. Hoboken: John Wiley & Sons, Inc., 2003: 1-253. [19] SAKA Y, GUNZBURGER M, BURKARDT J. Latinized, improved LHS, and CVT point sets in hypercubes[J]. International Journal of Numerical Analysis and Modeling, 2007, 4(3-4): 729-743. [20] JU L, DU Q, GUNZBURGER M. Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations[J]. Parallel Computing, 2002, 28(10): 1477-1500. [21] VIMAL S, KHARI M, CRESPO R G, et al. Energy enhancement using Multiobjective Ant colony optimization with Double Q learning algorithm for IoT based cognitive radio networks[J]. Computer Communications, 2020, 154: 481-490. [22] SAMMA H, MOHAMAD-SALEH J, SUANDI S A, et al. Q-learning-based simulated annealing algorithm for constrained engineering design problems[J]. Neural Computing and Applications, 2020, 32(9): 5147-5161. [23] DENG X, HAN D, DEZERT J, et al. Evidence combination from an evolutionary game theory perspective[J]. IEEE Transactions on Cybernetics, 2015, 46(9): 2070-2082. [24] TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06),November 28, 2005, Vienna, Austria. Piscataway: IEEE, 2006: 695-701. [25] WANG H, WU Z, RAHNAMAYAN S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20): 4699-4714. [26] 周新宇,吴志健,王晖,等.一种精英反向学习的粒子群优化算法[J].电子学报,2013,41(8):1647-1652. [27] 钱晓宇,方伟.基于局部搜索的反向学习竞争粒子群优化算法[J].控制与决策,2021,36(4):779-789. |