[1] SUN J, FUJITA H, ZHENG Y J, et al. Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods[J]. Information Sciences, 2021, 559: 153-170. [2] 吴芃吴,应宇仲,伟俊.基于单变量分析的我国上市公司两阶段财务预警模型实证研究:以纺织行业为例[J].东南大学学报(哲学社会科学版),2006(2):18-23,126. [3] BARREDA A A, KAGEYAMA Y, SINGH D, et al. Hospitality bankruptcy in United States of America: A multiple discriminant analysis-logit model comparison[J]. Journal of Quality Assurance in Hospitality & Tourism, 2017, 18 (1): 86-106. [4] GARCIA V, MARQUES A I, SANCHEZ J S. Dissimilarity-based linear models for corporate bankruptcy prediction[J]. Computational Economics, 2019, 53 (3): 1019-1031. [5] KINAY B. Ordered Logit model approach for the determination of financial distress[J]. Bulletin de la Societe des Sciences Medicales du Grand-Duche de Luxembourg, 2010, S1 (1): 119-133. [6] KIM S Y, UPNEJA A. Predicting restaurant financial distress using decision tree and Ada Boosted decision tree models[J]. Economic Modelling, 2014, 36: 354-362. [7] ITURRIAGA F J L, SANZ I P. Bankruptcy visualization and prediction using neural networks: A study of US commercial banks[J]. Expert Systems with Applications, 2015, 42(6): 2857-2869. [8] WU C, WANG L, SHI Z. Financial distress prediction based on support vector machine with a modified kernel function[J]. Journal of Intelligent Systems, 2016, 25(3): 417-429. [9] LIN F Y, YEH C C, LEE M Y. Integrating nonlinear dimensionality reduction with random forests for financial distress prediction[J]. Journal of Testing and Evaluation, 2015, 43(3): 645-653. [10] 王思宇,陈建平.基于LightGBM算法的信用风险评估模型研究[J].软件导刊,2019,18(10):19-22. [11] 沙靖岚.基于LightGBM与XGBoost算法的P2P网络借贷违约预测模型的比较研究[D].大连:东北财经大学,2017. [12] 贾鹏翔.基于LightGBM的二手车价格预测[D].济南:山东师范大学,2021. [13] 顾桐,许国良,李万林,等.基于集成LightGBM和贝叶斯优化策略的房价智能评估模型[J].计算机应用,2020,40(9):2762-2767. [14] 裴兰珍,林明亮,罗赟骞,等.基于Light GBM的僵尸网络检测方法[J].电子信息对抗技术,2020,35(5):79-84. [15] EDUARDO A G, FERNANDO F R, HICHAM G. Predicting corporate financial failure using macroeconomic variables and accounting data[J]. Computational Economics, 2019, 53(1): 227-257. [16] 李茜,唐恒书.基于三种BP-NNs改进算法的财务预警研究[J].会计之友,2019(6):55-62. [17] 牛润楷,余浪,李秉成.基于内部资本市场信息的企业集团财务危机预测研究[J].财会通讯,2019(27):3-10,56. [18] CHEN C C, CHEN C D, LIEN D. Financial distress prediction model: The effects of corporate governance indicators[J]. Journal of Forecasting, 2020, 39(8): 1238-1252. [19] 边海容,万常选,刘德喜,等.考虑Web金融信息的上市企业财务危机预测模型研究[J].计算机科学,2013,40(11):295-298,315. [20] CHIU C C, KU Y C, LIE T, et al. Internet auction fraud detection using social network analysis and classification tree approaches[J]. International Journal of Electronic Commerce, 2011, 15(3): 123-147. [21] BENOIT D F, VAN DEN POEL D. Improving customer retention in financial services using kinship network information[J]. Expert Systems with Applications, 2012, 39(13): 11435-11442. [22] VERBEKE W, MARTENS D, BAESENS B. Social network analysis for customer churn prediction[J]. Applied Soft Computing, 2014, 14: 431-446. [23] PARK K, SHIN H. Stock price prediction based on a complex interrelation network of economic factors[J]. Engineering Applications of Artificial Intelligence, 2013, 26(5): 1550-1561. [24] 李智彬.基于SVD与LightGBM的音乐推荐算法研究[D].杭州:浙江工商大学,2018. [25] 宋婷颖.基于集成方法的共享单车使用量预测[J].工业控制计算机,2019,32(4):75-76,79. |