[1] 莫赞,张灿凤,魏伟.基于Bagging集成的个人信用风险评估方法研究[J].系统工程,2019,37(1):147-155. [2] 吴金旺,顾洲一.基于非平衡样本的商业银行客户信用风险评估—以A银行为例[J].金融理论与实践,2018(7):51-57. [3] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. [4] PRUSA J, KHOSHGOFTAAR T M, DITTMAN D J, et al. Using random undersampling to alleviate class imbalance on tweet sentiment data[C]//2015 IEEE 16th International Conference on Information Reuse and Integration, August 13-15, 2015, San Francisco, California, USA.New York:IEEE, 2015: 197-202. [5] 欧阳源遊.基于混合采样的非平衡数据集分类研究[D].重庆:重庆大学,2015:379-381,418. [6] 张涛,汪御寒.基于样本依赖代价矩阵的小微企业信用评估方法[J].同济大学学报(自然科学版),2020,48(1):153-162. [7] FERNANDES G B, ARTES R. Spatial dependence in credit risk and its improvement in credit scoring[J]. European Journal of Operational Research, 2016, 249(2): 517-524. [8] BUTARU F, CHEN Q Q, CLARK B, et al. Risk and risk management in the credit card industry[J]. Journal of Banking & Finance, 2016, 72: 218-239. [9] 程砚秋.基于不均衡数据的小企业信用风险评价[J].运筹与管理,2016,25(6):181-189. [10] 陈舒期,梁雪春.改进的SSVM集成算法在信用风险评估中的应用[J].计算机工程与设计,2019,40(10):2822-2826. [11] ZHU Y, XIE C,WANG G J, et al.Comparison of individual, ensemble and integrated ensemble machine learning methods to predict China’s SME credit risk in supply chain finance[J]. Neural Computing and Applications, 2017, 28(1): 41-50. [12] 柳向东,李凤.大数据背景下网络借贷的信用风险评估—以人人贷为例[J].统计与信息论坛,2016(5):41-48. [13] ZHANG W Y, YANG D Q, ZHANG S, et al. A novel multi-stage ensemble model with enhanced outlier adaptation for credit scoring[J]. Expert Systems with Applications, 2020,165: 113872. [14] NIU K, ZHANG Z M, LIU Y, et al. Resampling ensemble model based on data distribution for imbalanced credit risk evaluation in P2P lending[J]. Information Sciences, 2020, 536: 120-134. [15] GHASEMIAN A, HOSSEINMARDI H, GALSTYAN A, et al. Stacking models for nearly optimal link prediction in complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23393-23400. [16] BHASURAN B, MURUGESAN G, ABDULKADHAR S, et al. Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases[J]. Journal of Biomedical Informatics, 2016, 64: 1-9. [17] 崔少泽,赵森尧.基于ADASYN-IFA-Stacking的再入院患者风险预测方法[J].系统工程理论与实践,2021,41(3):744-758. [18] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]//Advances in Intelligent Computing pt.1:International Conference on Advances in Intelligent Computing(ICIC2005), August 23-26, 2005, Hefei, China.Berlin: Springer-Verlag, 2005: 370-379. |