[1] 徐浩然,许波,徐可文.机器学习在股票预测中的应用综述[J].计算机工程与应用,2020,56(12):19-24. [2] 岑跃峰,张晨光,岑岗,等.基于近端强化学习的股价预测方法[J].控制与决策,2021,36(4):967-973. [3] ARIE H, GIORA H. Forecasting stock prices[J]. International Review of Economics & Finance, 2021, 73(3): 249-256. [4] 姚萍,王杰,杨爱军,等.基于EGB2分布族的GAS-EGARCH模型与VaR预测[J].运筹与管理,2019,28(11):125-134. [5] 王苏生,王俊博,许桐桐,等.基于ARMA-GARCH-SN模型的沪深300股指期货日内波动率研究与预测[J].运筹与管理,2018,27(4):153-161. [6] 乔若羽.基于神经网络的股票预测模型[J].运筹与管理,2019,28(10):132-140. [7] MOHAMMAD R I, NGUYET N. Comparison of financial models for stock price prediction[J]. Journal of Risk and Financial Management, 2020, 13(8): 1-19. [8] JIN Z, GUO K, SUN Y, et al. The industrial asymmetry of the stock price prediction with investor sentiment: based on the comparison of predictive effects with SVR[J]. Journal of Forecasting, 2020, 39(7): 1166-1178. [9] HUANG M X, BAO Q L, ZHANG Y, et al. A hybrid algorithm for forecasting financial time series data based on DBSCAN and SVR[J]. Information, 2019, 10(3): 1-21. [10] 刘向丽,王旭朋.基于小波分析的股指期货高频预测研究[J].系统工程理论与实践,2015,35(6):1425-1432. [11] 王文波,费浦生,羿旭明.基于EMD与神经网络的中国股票市场预测[J].系统工程理论与实践,2010,30(6):1027-1033. [12] 崔焕影,窦祥胜.基于EMD-GA-BP与EMD-PSO-LSSVM的中国碳市场价格预测[J].运筹与管理,2018,27(7):133-143. [13] 蒋永华,焦卫东,李荣强,等.应用自适应带宽信号的BS-EMD混叠消除[J].振动与冲击,2018,37(16):83-90. [14] 司莉,毕贵红,张寿明,等.一种改进的经验模态分解方法[J].计算机工程与应用,2014,50(14):194-201. [15] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceed of the Royal Society of London, 1998, 454(3): 903-995. [16] 耿晶晶,刘玉敏,李洋,等.基于CNN-LSTM的股票指数预测模型[J].统计与决策,2021,37(5):134-138. [17] 贺毅岳,李萍,韩进博.基于CEEMDAN-LSTM的股票市场指数预测建模研究[J].统计与信息论坛,2020,35(6):34-45. |