[1] CAPUANO N, CHICLANA F, HERRERA-VIEDMA E, et al. Fuzzy group decision making for influence-aware recommendations[J]. Computers in Human Behavior, 2019, 101: 371-379. [2] XIAO J, WANG X L, ZHANG H J. Managing personalized individual semantics and consensus in linguisticdistribution large-scale group decision making[J]. Information Fusion, 2020, 53: 20-34. [3] 董庆兴,朱克毓,梁昌勇.基于双重反馈机制的语言型动态群体评价方法[J].系统工程学报,2018,33(5):710-720. [4] QI X W, LIANG C Y, ZHANG J L. Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment[J]. Computers & Industrial Engineering, 2015, 79: 52-64. [5] QIN J D, LIU X W, PEDRYCZ W. An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment[J]. European Journal of Operational Research, 2017, 258(2): 626-638. [6] KRISHANKUMAR R, RAVICHANDRAN K S, KAR S, et al. Interval-valued probabilistic hesitant fuzzy set for multi-criteria group decision-making[J]. Soft Computing, 2019, 23 (21): 10853-10879. [7] 张发明,王伟明.多粒度不确定语言信息下的多阶段交互式群体评价方法[J].浙江大学学报(理学版),2017,44(6):724-734. [8] GHADIKOLAEI A S, MADHOUSHI M, DIVSALAR M. Extension of the VIKOR method for group decision making with extended hesitant fuzzy linguistic information[J]. Neural Computing & Applications, 2018, 30(12): 3589-3602. [9] PANG Q, WANG H, XU Z S. Probabilistic linguistic term sets in multi-attribute group decision making[J]. Information Sciences, 2016, 369: 128-143. [10] 刘思峰.灰色系统理论及其应用(第八版)[M].北京:科学出版社,2017. [11] KANG H K, KIM D G, JEONG H W, et al. A novel interval grey number and entropy-based solution for multiple-criteria group decision making problem[C]//2012 9th International Conference on Ubiquitous Intelligence and Computing & 9th International Conference on Autonomic and Trusted Computing, September 4-7, 2012, Kyushu Sangyo University, Fukuoka, Japan.IEEE,2012: 349-356.DOI: 10.1109/UIC-ATC.2012.93. [12] TANG M, ZHOU X Y, LIAO H C, et al. Ordinal consensus measure with objective threshold for heterogeneous large-scale group decision making[J]. Knowledge-Based Systems, 2019, 180: 62-74. [13] ZHANG B W, LIANG H M, ZHANG G Q, et al. Minimum deviation ordinal consensus reaching in GDM with heterogeneous preference structures[J]. Applied Soft Computing, 2018, 67: 658-676. [14] 李艳虹,寇纲,彭怡,等.基于矩阵相似性的异构群体偏好信息集结方法[J].系统科学与数学,2019,39(10):1672-1683. [15] 张发明,郭亚军,易平涛.一种主客方协作式群体评价方法及其应用[J].中国管理科学,2010,18(4):145-151. [16] 董庆兴,郭亚军,马凤妹.基于差异驱动的主客体协作式综合评价方法[J].中国管理科学,2012,20(1):171-176. [17] 张发明,李小霜.区间信息下的主客方协作式群体评价方法及其应用[J].中国管理科学,2016,24(6):143-150. [18] 张发明,代万强,袁宇翔.信息具有正态分布特征的主客方协作式群体评价方法及其应用[J].控制与决策,2018,33(12): 2251-2257. [19] 闫书丽,刘思峰,朱建军,等.基于相对核和精确度的灰数排序方法[J].控制与决策,2014,29(2):315-319. [20] 张发明,郭亚军,易平涛.基于二维密度加权算子的群体评价信息集结方法[J].系统管理学报,2009,18(4):397-401. |