[1] Luca M, Zervas G. Fake it till you make it: reputation, competition, and yelp review fraud[J]. Management Science, 2016. [2] Li Luyang, Qin Bing, Liu Ting. A review of false comment detection research[J]. Chinese Journal of Computers, 2018, 41(4): 946-968(in Chinese) [3] Zhang Qi, Ji Shujuan, Fu Qiang, et al. Water army group detection and feature analysis based on weighted comment graphs[J]. Computer Applications, 2019, 39(6): 1595-1600. [4] Li H, Chen Z, Liu B, et al. Spotting fake reviews via collective positive-unlabeled learning[C]//Proceedings of the 2014 IEEE International Conference on Data Mining. IEEE, Shenzhen, China, 2014: 899-904 [5] Ott M, Choi Y, Cardie C, et al. Finding deceptive opinion spam by any stretch of the imagination[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Vol. 1(ACL HLT 2011), Portland, USA, 2011: 309-319. [6] Fei G, Mukherjee A, Liu B, et al. Exploiting burstiness in reviews for review spammer detection[C]//Proceedings of the 7th International AAAI Conference on Weblogs and Social Media (ICWSM 2013). Ann Arbor, USA, 2013: 175-184. [7] Mukherjee A, Kumar A, Liu B, et al. Spotting opinion spammers using behavioral footprints[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2013). Chicago, USA, 2013: 632-640. [8] Mukherjee A, Liu B, Glance N. Spotting fake reviewer groups in consumer reviews[C]//Proceedings of the 21st International Conference on World Wide Web(WWW 2012). Lyon, France, 2012: 191-200. [9] Xu C, Zhang J, Chang K, et al. Uncovering collusive spammers in Chinese review websites[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. San Francisco, USA, 2013: 979-988. [10] Xu C, Zhang J. Combating product review spam campaigns via multiple heterogeneous pairwise features[C]//Proceedings of the 2015 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Vancouver, Canada, 2015: 172-180. [11] Ye J, Akoglu L. Discovering opinion spammer groups by network footprints[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, Porto, Portugal, 2015: 267-282. [12] Mukherjee A, Liu B, Wang J, et al. Detecting group review spam[C]//Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad, India, 2011: 93-94. [13] Han Zhongming, Yang Ke, Tan Xusheng. Detecting large-scale e-commerce marine corps using spectral analysis of weighted user relationship graphs[J]. Chinese Journal of Computers, 2017, 4: 939-954(in Chinese). [14] Xu C, Zhang J. Towards collusive fraud detection in online reviews[C]//Proceedings of the 2015 IEEE International Conference on Data Mining. Atlantic City, USA, 2015: 1051-1056. [15] Akoglu L, Chandy R, Faloutsos C. Opinion fraud detection in online reviews by network effects[C]//Proceedings of the 7th International AAAI Conference on Weblogs and Social Media. Boston, USA, 2013: 2-11. [16] Xu C. Detecting collusive spammers in online review communities[C]//Proceedings of the 6th Ph. D. Students Workshop on Information and Knowledge Management (PIKM 2013). San Francisco, USA, 2013: 33-40. [17] Xie S, Wang G, Lin S, et al. Review spam detection via temporal pattern discovery[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2012). Beijing, China, 2012: 823-831. [18] Feng S, Xing L, Gogar A, et al. Distributional footprints of deceptive product reviews[C]//Proceedings of the 6th International AAAI Conference on Weblogs and Social Media (ICWSM 2012). Dublin, Ireland, 2012: 98-105. [19] Melvin Ryan L, Xiao Jiajie, Godwin Ryan C, et al. Visualizing correlated motion with HDBSCAN clustering[J]. Pubmed, 2018, 27(1). [20] Mark de Berg, Ade Gunawan, Marcel Roeloffzen. Faster DBSCAN and HDBSCAN in Low-Dimensional Euclidean Spaces[J]. World Scientific Publishing Company, 2019, 29(1). [21] Scitovski R, Kristian Sabo K. A combination of k-means and DBSCAN algorithm for solving the multiple generalized circle detection problem[J]. Advances in Data Analysis and Classification, 2020(2). |