运筹与管理 ›› 2023, Vol. 32 ›› Issue (1): 97-102.DOI: 10.12005/orms.2023.0016

• 理论分析与方法探讨 • 上一篇    下一篇

基于消费者多维度偏好的个性化评论排序方法研究

杨弦1, 骆丹2, 吴江宁2   

  1. 1.东北财经大学 管理科学与工程学院,辽宁 大连 116025;
    2.大连理工大学 经济管理学院,辽宁 大连 116024
  • 收稿日期:2021-01-03 出版日期:2023-01-25 发布日期:2023-03-01
  • 作者简介:杨弦(1988-),女,湖南益阳人,副教授,博士,研究方向:在线评论与数据挖掘;骆丹(1995-),女,内蒙古包头人,研究生,硕士,研究方向:在线评论与数据挖掘;吴江宁(1964-),女,辽宁沈阳人,教授,博士,研究方向:数据挖掘与商务智能。
  • 基金资助:
    国家自然科学基金资助项目(72101051,71801032,72172025);辽宁省教育厅青年科技人才育苗项目(LN2020Q30);辽宁省大数据管理与优化决策重点实验室科研平台支持专项项目(20210051);教育部人文社科规划基金项目(21YJAZH130)

Personalized Ranking Online Reviews Based on Consumer Preferences

YANG Xian1, LUO Dan2, WU Jiangning2   

  1. 1. School of Management Science and Engineering, Dongbei University of Finance & Economics, Dalian 116025, China;
    2. School of Economics and Management, Dalian University of Technology, Dalian 116024, China
  • Received:2021-01-03 Online:2023-01-25 Published:2023-03-01

摘要: 海量评论数据导致了信息过载,基于消费者的偏好对评论进行个性化排序尤为必要。本文考虑消费者多维偏好,即产品特征偏好、评论情感偏好和评论浏览数量偏好,提出了评论排序的消费者偏好满意度量化方法,将排序问题转化为最大化满意度的优化问题,鉴于问题的复杂度无法精确求解,提出了一个基于改进贪婪算法的近似求解算法。采用美团网酒店的评论数据进行实验,结果显示本文提出的算法与其他相关算法相比有效性显著提高,且具有较高的敏感度。研究结果对消费者提高决策效率,以及电商平台获取消费者偏好、改进评论系统,有着重要的现实指导意义。

关键词: 评论排序, 消费者偏好, 优化问题, 贪婪算法, 近似求解

Abstract: Due to the information overload of online reviews and consumer demand for customized services, it is particularly necessary to achieve personalized review ranking. Based on consumers’ multidimensional preferences, that is, product feature preference, review sentiment preference and browse quantity preference, this paper proposes a method to calculate consumer preference satisfaction of a review ranking, so as to transform the ranking issue into an optimization problem with the goal of maximizing the satisfaction. Because the problem is too complex to be solved accurately, an approximate solution based on an improved greedy algorithm is proposed. Finally, intensive experiments are conducted on real data from meituan.com, and the optimal parameter of the algorithm is determined. The results reveal that the proposed approach has the best effectiveness compared with other relevant methods and high sensitivity. The research can provide important practical guidance for consumers to improve decision-making efficiency and e-commerce platforms to improve review systems.

Key words: review ranking, consumer preference, optimization problem, greedy algorithm, approximate solution

中图分类号: