[1] 毛帅,王冰,唐漾,等.人工智能在过程工业绿色制造中的机遇与挑战[J].Engineering,2019,5(6):995-1002,1103-1111. [2] 罗序斌,黄亮.中国制造业高质量转型升级水平测度与省际比较——基于“四化”并进视角[J].经济问题,2020(12):43-52. [3] 李益兵,黄炜星,吴锐.基于改进人工蜂群算法的多目标绿色柔性作业车间调度研究[J].中国机械工程, 2020, 31(11):1344-1350,1385. [4] 刘彩洁,徐志涛,张钦,等.分时电价下基于NSGA-Ⅱ的柔性作业车间绿色调度[J].中国机械工程,2020,31(5):576-585. [5] 李聪波,雷焱绯,肖溱鸽,等.面向广义能耗的柔性作业车间调度优化模型[J].计算机集成制造系统,2018,24(12):3050-3059. [6] 彭建刚,刘明周,张玺,等.基于Pareto优化的离散自由搜索算法求解多目标柔性作业车间调度问题[J].中国机械工程,2015,26(5):620-626. [7] Zitzler E, Thiele L, Laumanns M, et al. Performance assessment of multiobjective optimizers: an analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2):117-132. [8] Liu S X, Tang J F, Song J H. Order-planning model and algorithm for manufacturing steel sheets[J]. International Journal of Production Economics, 2004, 100(1): 30-43. [9] Komaki G M, Kayvanfar V. Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time[J]. Journal of Computational Science. 2015, 8: 109-120. [10] Tawhid M A, Ibrahim A M. A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems[J]. Evolving Systems: An Interdisciplinary Journal for Advanced Science and Technology, 2020, 11(2): 65-87. [11] Xu W J, He L J, Zhu G Y. Many-objective flow shop scheduling optimization with genetic algorithm based on fuzzy sets[J]. International Journal of Production Research, 2021, 59(3): 702-726. [12] 田旻,张光军,刘人境.粒子群遗传混合算法求解考虑传输时间FJSP[J].运筹与管理,2019,28(4):78-88. [13] Zhang G H, Gao L, Shi Y. An effective genetic algorithm for the flexible job-shop scheduling problem[J]. Expert Systems with Applications, 2010, 38(4): 3563-3573. [14] 魏文红,周建龙,陶铭,等.一种基于反向学习的约束差分进化算法[J].电子学报,2016,44(2):426-436. [15] 黄学文,孙榕,艾亚晴.招标采购中的采购物品打包模型及其优化算法[J].运筹与管理,2020,29(9):18-26. [16] 王杜鹃.生产调度干扰应对模型和算法[M].北京:科学出版社,2018. [17] 陈超,王艳,严大虎,等.面向能耗的柔性作业车间动态调度研究[J].系统仿真学报,2017,29(9):2168-2174,2181. [18] 夏西强,徐春秋.政府碳税与补贴政策对低碳供应链影响的对比研究[J].运筹与管理,2020,29(11):112-120. |