运筹与管理 ›› 2023, Vol. 32 ›› Issue (1): 47-53.DOI: 10.12005/orms.2023.0008

• 理论分析与方法探讨 • 上一篇    下一篇

面向绿色智能制造的高维多目标动态作业车间调度优化

李稚, 周双牛   

  1. 天津工业大学 经济与管理学院,天津 300387
  • 收稿日期:2021-01-11 出版日期:2023-01-25 发布日期:2023-03-01
  • 作者简介:李稚(1980-),女,副教授,博士,硕士生导师,研究方向:智能制造,复杂系统优化与预测技术;周双牛(1997-),男,硕士研究生,研究方向:生产调度,智能制造。
  • 基金资助:
    国家自然科学基金青年项目(72002153);国家自然科学基金面上项目(41971249)

High Dimensional Multi-objective Dynamic Job Shop Scheduling Optimization for Green Intelligent Manufacturing

LI Zhi, ZHOU Shuangniu   

  1. School of Economics and Management, Tiangong University, Tianjin 300387, China
  • Received:2021-01-11 Online:2023-01-25 Published:2023-03-01

摘要: 在当前环境问题日益严峻情况下,绿色智能制造受到广泛关注。在动态柔性作业车间基础上考虑不同机器状态下的能耗情况、机器使用节能方法,构建以极小化总能耗、最大完工时间、机器总负荷和产品质量稳定性为目标的高维多目标绿色动态柔性作业车间调度模型,并设计改进的灰狼优化IMOGWO算法求解该问题。首先,采用反向学习初始化种群策略,以扩大种群多样性;然后,依据多目标问题和标准GWO算法的特点提出多级官员领导机制,并引入POX交叉和逆序变异算子;最后,改进精英保留策略用于多目标优化算法。为证明算法的有效性,设计两组仿真实验分别对三种算法进行比较。实验结果表明,运用本文改进的IMOGWO算法求解多目标问题有更好的收敛性和分布性。

关键词: 绿色作业车间, 高维多目标, 动态调度, 总能耗, IMOGWO算法

Abstract: Nowadays, environmental problems are becoming more and more serious, and green and intelligent manufacturing has attracted much attention. On the basis of the dynamic flexible job-shop, considering different machine status under the situation of energy consumption and energy-saving machine works, this paper builds the multi-objective dynamic flexible job-shop scheduling model with goals of total energy consumption, maximum completion time, machine total load and stability of product quality, and then develops an Improved Multi-objective Grey Wolf Optimizer (IMOGWO) to solve the model. Firstly, we use the reverse learning initialization population strategy to expand the population diversity. Sencondly, according to the multi-objective problem and characteristics of standard GWO algorithm, we propose multi-stage official leadership mechanism, and introduce POX crossover and reverse mutation operator. Finally, the elite retention strategy is improved to adapt to the multi-objective optimization algorithm. In order to prove the effectiveness of the algorithm, we designe two groups of simulation experiments to compare three algorithms respectively. The simulation results show that the improved IMOGWO algorithm has better convergence and distribution for solving multi-objective problems.

Key words: green job-shop, high dimensional multi-objective, dynamic scheduling, total energy consumption, IMOGWO algorithm

中图分类号: