[1] 电力规划设计总院.中国能源发展报告2019[R].北京:人民日报出版社,2020. [2] 段宏波,汪寿阳.中国的挑战:全球温控目标从2℃到1.5℃的战略调整[J].管理世界,2019,35(10):50-63. [3] Henriques I, Sadorsky P. Oil prices and the stock prices of alternative energy companies[J]. Energy Economics, 2008, 30(3): 998-1010. [4] Sadorsky P. Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies[J]. Energy economics, 2012, 34(1): 248-255. [5] Managi S, Okimoto T. Does the price of oil interact with clean energy prices in the stock market?[J]. Japan and the World Economy, 2013, 27: 1-9. [6] Bondia R, Ghosh S, Kanjilal K. International crude oil prices and the stock prices of clean energy and technology companies: evidence from non-linear cointegration tests with unknown structural breaks[J]. Energy, 2016, 101: 558-565. [7] Inchauspe J, Ripple R D, Trück S. The dynamics of returns on renewable energy companies: a state-space approach[J]. Energy Economics, 2015, 48: 325-335. [8] Zhang G, Du Z. Co-movements among the stock prices of new energy, high-technology and fossil fuel companies in China[J]. Energy, 2017, 135: 249-256. [9] 秦天程.传统能源及碳交易价格与新能源股价——基于VAR和CAPM-GARCH模型的分析[J].技术经济与管理研究,2014 (12):120-124. [10] Wen X, Guo Y, Wei Y, et al. How do the stock prices of new energy and fossil fuel companies correlate? evidence from China[J]. Energy Economics, 2014, 41: 63-75. [11] Ji Q, Liu B Y, Fan Y. Risk dependence of CoVaR and structural change between oil prices and exchange rates: a time-varying copula model[J]. Energy Economics, 2019, 77: 80-92. [12] Hiemstra C, Jones J D. Testing for linear and nonlinear Granger causality in the stock price-volume relation[J]. The Journal of Finance, 1994, 49(5): 1639-1664. [13] Diks C, Panchenko V. A new statistic and practical guidelines for nonparametric Granger causality testing[J]. Journal of Economic Dynamics and Control, 2006, 30(9-10): 1647-1669. [14] Patton A J. Modelling asymmetric exchange rate dependence[J]. International Economic Review, 2006, 47(2): 527-556. [15] Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines[J]. Annals of Mathematics and Artificial intelligence, 2001, 32(1-4): 245-268. [16] Kim G, Silvapulle M J, Silvapulle P. Comparison of semiparametric and parametric methods for estimating copulas[J]. Computational Statistics & Data Analysis, 2007, 51(6): 2836-2850. [17] Czado C. Analyzing dependent data with vine copulas[M]. Switzerland: Springer, 2019. [18] Baykut E, Kula V. The volatility and shock transmission patterns between the BIST Sustainability and BIST 100 Indices[J]. Frontiers in Applied Mathematics and Statistics, 2019, 5: 50. |