[1] 林辉,孔亮.中国股市非对称相关效应:基于行业视角的分析[J].证券市场导报,2010(7):44-49. [2] 胡昌生,池阳春.情绪预测性与市场择时[J].投资研究,2014,33(4):101-119. [3] Barber B M, Odean T. Trading is hazardous to your wealth: the common stock investment performance of individual investors[J]. Journal of Finance, 2000, 55(2): 773-806. [4] Shiller R J. Irrational exuberance:(second edition)[M]. Princeton University Press, 2009. [5] Lam F E, Wei K C J. Limits-to-arbitrage, investment frictions, and the asset growth anomaly[J]. Journal of Financial Economics, 2011, 102(1): 127-149. [6] Fama E F, French K R. Dissecting anomalies with a five-factor model[J]. Review of Financial Studies, 2015, 29(1): 69-103. [7] 丁志国,金博,徐德财.有效市场的检验——行为金融对EMH理论的批判[J].当代经济研究,2017,(3):51-59. [8] Yoon S J. Time-varying risk aversion and return predictability[J]. International Review of Economics & Finance, 2017, 49(5): 327-339. [9] Kazem A, Sharifi E, Hussain F K, et al. Support vector regression with chaos-based firefly algorithm for stock market price forecasting[J]. Applied soft computing, 2013, 13(2): 947-958. [10] Dufour J M, Stevanovic D. Factor-augmented VARMA models with macroeconomic applications[J]. Journal of Business & Economic Statistics, 2013, 31(4): 491-506. [11] 董子静,赵朝熠,石茂国,郑鹤林.支持向量机在股指现货和衍生品关系建模中的应用[J].数学的实践与认识,2019,49(10):308-320. [12] 黄宏运,朱家明,李诗争.基于遗传算法优化的BP神经网络在股指预测中的应用研究[J].云南大学学报(自然科学版),2017,39(3):350-355. [13] 武大硕,张传雷,陈佳,向启怀.基于遗传算法改进LSTM神经网络股指预测分析[J].计算机应用研究,2020,37(S1):86-87,107. [14] 熊志斌.基于ARIMA与神经网络集成的GDP时间序列预测研究[J].数理统计与管理,2011,30(2):306-314. [15] 王强,田学民.基于模糊信息粒化软测量建模方法研究[J].北京理工大学学报,2012,32(9):955-959. [16] Chen H, Tino P,Yao X. Probabilistic classification vector machines[J]. IEEE Transactions on Neural Networks, 2009, 20(6): 901-914. [17] 孙轶轩,邵春福,计寻,朱亮.基于ARIMA与信息粒化SVR组合模型的交通事故时序预测[J].清华大学学报(自然科学版),2014,54(3):348-353,359. |