[1] 兑红炎,陈立伟,周毫,等.基于系统可靠性的组件综合重要度变化机理分析[J].运筹与管理,2018,27(2):79-84. [2] 贾旭杰,马瑞宏,李玉杰,等.模块化可靠性系统的Signature计算方法研究[J].运筹与管理,2018,27(12):95-99. [3] 黄金波,孔德景,崔利荣.多阶段可校正系统退化建模与可靠性评估[J].系统工程与电子技术,2016,38(04):965-969. [4] Dong Q L, Cui L R, Si S B. Reliability and availability analysis of stochastic degradati-on systems based on bivariate Wiener proc-esses[J]. Applied Mathematical Modelling, 2020, 79: 414-433. [5] 刘天宇.复杂退化过程下产品可靠性评估与剩余寿命预测方法研究[D].长沙:国防科学技术大学,2016. [6] Pan J, Wang X Y, Chen W H, et al. Statistical analysis on accelerated degradation test data based on multiple performance parameters[J]. Advanced Materials Research, 2012, 430(1): 1417-1423. [7] Sari J, Newby M, Brombacher A, Tang L C. Bivariate constant stress degradation model: led lighting system reliability estimation with two-stage modelling[J]. Quality and Reliability Engineering International, 2009, 25(8): 1067-1084. [8] Pan Z Q, Balakrishnan N, Sun Q, et al. Bivariate degradation analysis of products based on Wiener processes and copulas[J]. Journal of Statistical Computation and Simulation, 2013, 83(7): 1316-1329. [9] Peng W W, Li Y F, Yang Y J, et al. Bivariate analysis of incomplete degradation observa-ntions based on inverse Gaussian processes and copulas[J]. IEEE Transactions on Reliability, 2016, 65(2): 624-639. [10] Li C P, Hao H B. A copula-based degradation modeling and reliability assessment[J]. Engineering Letters, 2016, 24(3): 295-300. [11] 周义蛟,郭基联,万巍,等.基于Wiener和Copula函数性能退化模型的减推力起飞可靠性收益评估研究[J].推进技术,2019,40(03):667-674. [12] 刘小平,郭斌,崔德军,等.基于二元维纳过程的小样本齿轮泵可靠寿命预测[J].中国机械工程,2019,7:1-9. [13] 张志鹏.系统多元相关退化过程建模及可靠度评估方法研究[D].四川:电子科技大学,2016. [14] 贾旭杰,徐凡启,松雪莹.考虑动态相依性的可靠性系统随机Copula模型及其参数估计[J].数理统计与管理,2019,38(02):261-269. [15] 鲍兆伟.基于Copula函数的多参数退化评估方法研究[D].南京:南京理工大学,2018. [16] Zhou R S, Serban N, Gebraeel N. Degradat-ion-based residual life prediction under dif-ferent environments[J]. The Annals of Applied Statistics, 2014, 8(3): 1671-1689. [17] Shen J Y, Cui L R, Ma Y Z. Availability and optimal maintenance policy for systems degrading in dynamic environments[J]. European Journal of Operational Research, 2019, 276(1): 133-143. [18] Qiu Q A, Cui L R. Reliability evaluation based on a dependent two-stage failure process with competing failures[J]. Applied Mathematical Modelling, 2018, 64: 699-712. [19] Burgess W L. Valve regulated lead acid battery float service life estimation using a Kalman filter[J]. Journal of Power Sources, 2009, 191(1): 16-21. [20] 张鹏,胡昌华,白灿,等.考虑随机效应的两阶段退化系统剩余寿命预测方法[J].中国测试,2019,45(01):1-7. [21] Gao H D, Cui L R, Kong D J. Reliability analysis for a Wiener degradation process model under changing failure thresholds[J]. Reliability Engineering & System Safety, 2018, 171: 1-8. [22] 高洪达.多阶段退化系统可靠性建模与可靠度计算[D].北京:北京理工大学,2019. [23] 郑英,马秋会,张永,王彦伟,樊慧津.一种基于锂电池退化阶段划分的剩余使用寿命的预测方法[P].湖北省:CN110161425A,2019-08-23. [24] Sklar A. Fonctions de repartition a n dimensions et leurs marges[J]. Publication de 1'Institut de Statistique de 1'Universite de Paris, 1959, 8: 229-231. [25] 陈倩,梁力军.基于分段损失分布法和Copula的银行操作风险集成度量[J].运筹与管理,2019,28(8):174-181. [26] Siegmund D. Boundary crossing probabilities and statistical applications[J]. The Annals of Statistics, 1986, 14(2): 361-404. [27] 王小林.基于非线性Wiener过程的产品退化建模与剩余寿命预测研究[D].长沙:国防科学技术大学,2014. [28] 郑华盛,胡结梅,李曦,等.高维数值积分的蒙特卡罗方法[J].南昌航空大学学报(自然科学版),2009,023(002):37-41. [29] 祝丽萍,陈琳,岳华.无穷积分算法研究[J].新疆师范大学学报(自然科学版),2006(1):31-34. |