运筹与管理 ›› 2022, Vol. 31 ›› Issue (2): 92-98.DOI: 10.12005/orms.2022.0048

• 理论分析与方法探讨 • 上一篇    下一篇

基于深度学习的直觉模糊集隶属度确定方法

那日萨, 孔茸, 高欢   

  1. 大连理工大学 经济管理学院,辽宁 大连 116024
  • 收稿日期:2020-02-27 出版日期:2022-02-25 发布日期:2022-03-11
  • 作者简介:那日萨(1970-),男,内蒙古乌兰浩特人,教授,博士,博士生导师,研究方向:模糊系统分析、文本挖掘;孔茸(1994-),女,河北献县人,硕士研究生,研究方向:模糊系统分析、文本挖掘;高欢(1994-),女,黑龙江牡丹江人,硕士研究生,研究方向:文本挖掘、深度学习。
  • 基金资助:
    国家自然科学基金面上项目(61471083);大连市科技创新基金项目(2018J11CY009)

Deep Learning-Based Determination Method for Membership Degree in Intuitionistic Fuzzy Sets

ZHAO Narias, KONG Rong, GAO Huan   

  1. School of Economics and Management, Dalian University of Technology, Dalian 116024, China
  • Received:2020-02-27 Online:2022-02-25 Published:2022-03-11

摘要: 直觉模糊集隶属度、非隶属度和犹豫度的确定方法是直觉模糊集理论与应用研究中一个十分重要的问题,其直接影响着相关方法的可扩展性及应用结果。然而,现有方法存在主观性强、标准难以统一等问题,并且大多基于模拟数据进行实验,难以应用至实际数据。针对上述问题以及大规模非结构化数据,提出一种基于深度学习的直觉模糊集隶属度、非隶属度和犹豫度确定方法。新方法克服了传统方法的技术和思维局限,拓展了直觉模糊集相关问题的研究思路,为其实际应用提供了更多可能。

关键词: 直觉模糊集, 隶属度, 非隶属度, 深度学习, 深层神经网络

Abstract: The determination of the membership, non-membership, and hesitation degrees is an important issue in intuitionistic fuzzy sets (IFS) research since it can directly influence the extendibility and application of relevant researches. However, there are many limitations in existing methods for determining the membership degree in IFS, such as subjectivity and inconsistency of standards. Most experiments are based on simulated data and are unsuitable for practical data. Aimed at the above problems and large-scale unstructured data, a method for determining membership, non-membership and hesitation in IFS based on deep learning is proposed. In this work, a Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM) model is constructed based on text, and it can automatically calculate the membership, non-membership and hesitation degrees of the text after the training process. Besides, the new method can be applied to other fields by modeling and training. The proposed method overcomes the technical and thinking limitations of traditional methods, expands the research ideas of IFS, and provides possibilities for its practical application.

Key words: intuitionistic fuzzy sets, membership degree, non-membership degree, deep learning, deep neural network

中图分类号: