运筹与管理 ›› 2011, Vol. 20 ›› Issue (6): 99-105.

• 应用研究 • 上一篇    下一篇

高斯—案例推理方法的预测模型及应用

郑康宁1, 李向阳1, 杨凯2   

  1. 1.哈尔滨工业大学 经济与管理学院, 黑龙江 哈尔滨 150001;
    2.哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2010-03-17 出版日期:2011-12-25
  • 作者简介:郑康宁(1978-),女,辽宁沈阳人,博士生,研究方向为供应链应急管理、决策支持。
  • 基金资助:
    国家自然科学基金资助项目(70971029,70771031);国家863计划项目(2009AA04Z151)

Gaussian Method in Case-Based Reasoning and Applications

ZHENG Kang-ning1, LI Xiang-yang1, YANG Kai2   

  1. 1. School of Management, Harbin Institute of Technology, Haibin 150001, China;
    2. School of Mechatronacis Engineering, Harbin Institute of Technology, Haibin 150001, China
  • Received:2010-03-17 Online:2011-12-25

摘要: 针对目前案例推理方法中存在的预测准确性低,可靠性差等方面的局限,提出了高斯—案例推理方法。在传统基于欧氏距离相似度计算研究的基础上提出了一种新的相似度计算方法,即运用高斯转换代替欧式距离度量来计算相似度的方法。引入距离比例的概念,将案例间的特征转化为高斯指标,进而计算案例间的相似度。在此基础上使用最近邻法检索出相似案例,通过对检索出的案例进行修改获得预测值。以物流外包企业风险预测为例,通过与两个案例推理模型(基于欧式距离的经典案例推理模型和灰色理论案例推理模型)的预测结果比较,得出在预测的准确性上,高斯案例推理预测模型优于其它两种模型。验证了利用高斯—案例推理模型预测企业物流外包风险的可行性。

关键词: 人工智能, 高斯案例推理, 相似度, 高斯指标, 预测模型

Abstract: To resolve the problem of the limitation of low accuracy and reliability in Case-based Reasoning(CBR), Gaussian Case-based Reasoning(GCBR)is proposed. In this research, based on the research on similarity measure on the basis of Euclidean metric, a new means of dealing with similarity measure by employing Gaussian transformations in place of the Euclidean metric is proposed. The concept of distance proportion is introduced to make a transformation that can transfer distances between a pair of cases on each feature into Gaussian indicators, and similarity between two cases will be derived. On that basis, the nearest-neighbor is applied to retrieve case similarity, and the predictive value will be generated by modifying cases. Taking the prediction for the risks of logistics outsourcing enterprise for example, compared with classical CBR model on the basis of Euclidean metric and the Grey CBR, GCBR model statistically and significantly performs better on predictive accuracy, which illustrates the feasibility of applying GCBR model to predict the risks of logistics outsourcing enterprise.

Key words: artificial intelligence, gaussian case-based reasoning, similarity, gaussian index, prediction model

中图分类号: