运筹与管理 ›› 2011, Vol. 20 ›› Issue (6): 88-98.

• 应用研究 • 上一篇    下一篇

基于DEA和神经网络集成模型的我国基础设施投资有效性预测研究

李玉龙1,2, 李忠富2   

  1. 1.中央财经大学 管理科学与工程学院, 北京 100081;
    2.哈尔滨工业大学 管理学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2009-12-05 出版日期:2011-12-25
  • 作者简介:李玉龙(1980-),男,黑龙江绥化人,博士,讲师,研究方向为决策预测评价、经济系统工程;李忠富(1964-),男,黑龙江呼兰人,教授,博士生导师,研究方向为建设经济、城市可持续发展。
  • 基金资助:
    国家自然科学基金资助项目(G0724003);中财121人才工程青年博士发展基金资助项目(QBJGL201006)

Combined DEA and Neural Network for Predicting Investment Validity of Infrastructure on China

LI Yu-long1,2, LI Zhong-fu2   

  1. 1. School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China;
    2. School of Management, Harbin Institute of Technology, Harbin 150001, China
  • Received:2009-12-05 Online:2011-12-25

摘要: 建立了DEA和神经网络集成的基础设施投资有效性预测模型。该模型首先应用DEA方法,对我国1993-2007年逐期的基础设施投资效率进行评价,得到了用于基础设施投资有效性预测的基本数据。根据对评价结果的投资有效和无效划分建立预测样本,选择多层感知器神经网络,分别对基础设施的规模有效性和技术有效性进行了预测。结果表明基础设施的投资有效性预测具有可行性,而且通过与RBF神经网络、logistic回归和C-支持向量分类机等方法对比,MLP-NN方法的回应率和反查都具有优势,表明应用DEA-MLP-NN进行有效性预测更为有效。

关键词: 工程管理, 预测, 数据包络分析, 神经网络, 基础设施投资

Abstract: Combined model of data envelopment analysis(DEA)and neural network for predicting investment validity of infrastructure on China is proposed in this paper. Firstly, investment efficiency on infrastructure based on DEA method from 1993 to 2007 is evaluated to obtain the basic data to predict investment validity. And then, according to the classifying samples which is established based on the evaluated results with DEA method, the scale validity and technical validity of infrastructure is separately predicted with the multi-layer perceptron neural network (MLP-NN). The results show that the prediction of investment validity on infrastructure is feasible, and the response rate and the recall have an obvious advantage by comparing with RBF neural network approach and C-SVM method and logistic regression. DEA-MLP-NN method is more effective.

Key words: engineering management, predicting, DEA, neural network, infrastructure investment

中图分类号: