运筹与管理 ›› 2014, Vol. 23 ›› Issue (1): 116-122.

• 理论分析与方法探讨 • 上一篇    下一篇

基于PSO-MAs算法的产品组合问题研究

胡忠义, 鲍玉昆, 熊涛   

  1. 华中科技大学 管理学院,湖北 武汉 430074
  • 收稿日期:2012-01-03 出版日期:2014-01-25
  • 作者简介:胡忠义(1987-),男,博士研究生,研究方向:智能优化建模与运作管理;鲍玉昆(1974-),男,教授,通讯作者,研究方向:智能预测与决策、运作管理;熊涛(1985-),男,博士研究生,研究方向:智能预测与决策、运作管理。
  • 基金资助:
    国家自然科学基金资助项目(70771042);中央高校基本科研业务费资助(HUST-2012QN208);湖北省人文社会科学重点研究基地现代信息管理研究中心资助项目

PSO based Memetic Algorithms for Product Mix Problems

HU Zhong-yi, BAO Yu-kun, XIONG Tao   

  1. School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2012-01-03 Online:2014-01-25

摘要: 针对多约束的产品组合问题,提出一种基于PSO的Memetic算法。该算法首先运用约束理论识别并剔除非瓶颈约束,然后基于伪效用比率设计了一个局部搜索算法,并将其加入到PSO算法的种群进化中,以增强PSO算法的局部学习能力。通过对算法在小规模和大规模算例中测试,表明该算法在小规模问题中优于许多已有算法,同时能在相对较短地时间内更有效地求解较大规模产品组合问题。因此本文提出的基于PSO的Memetic算法可以用来有效地求解实际中的产品组合问题。

关键词: 运筹学, 产品组合, 模因算法, 约束理论, 粒子群算法

Abstract: To solve the product mix problem with multiple constraints, a memetic algorithms is proposed based on particle swarm optimization(PSO). Firstly, the problem is simplified by recognizing and removing the non-bottlenecks based on the Theory of Constraints(TOC). Secondly, a pseudo utility ratio based local search is proposed to improve the exploitation ability of PSO. Both small-scale benchmark datasets and a group of randomly generated large-scale examples are used to test the proposed approach on solving the product mix problems. The computational results show that the proposed approach outperform some existing approaches, such as TOC, revised TOC, Tabu Search(TS), Simulated Annealing(SA)and Genetic Algorithms(GA), and can solve the large-scale problems more effectively. Hence, the proposed approach can be accepted as a practical approach to solve the product mix problem.

Key words: operation research, product mix problem, memetic algorithms, theory of constraints, particle swarm optimization

中图分类号: