[1] Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function[J]. Eur. J. Oper. Res., 1990, 48: 219-225.
[2] Tong S C. Interval number and fuzzy number linear programming[J]. Fuzzy Sets Syst., 1994, 66: 301-306.
[3] Ida M. Portfolio selection problem with interval coefficients[J]. Appl. Math. Lett., 2003, 16: 709-713.
[4] Huang Y F, Baetz B W, Huang G H. Violation analysis for solid waste management systems: an interval fuzzy programming approach[J]. J. Environ. Manage., 2002, 65: 431-446.
[5] Oliveira C. Multiple objective linear programming models with interval coefficients-illustrated overview[J]. Eur. J. Oper. Res., 2007, 181: 1434-1463.
[6] Alefeld G, Mayer G. Interval analysis: theory and applications[J]. J. Comput. Appl. Math., 2000, 121: 421-464.
[7] Ding K, Huang N J. A new class of interval projection neural networks for solving interval quadratic program[J]. Chaos Solitons Fract., 2008, 25: 718-725.
[8] Li W, Tian X L. Numerical solution method for general interval quadratic programming[J]. Appl. Math. Comput., 2008, 202: 589-595.
[9] Wu H C. Duality theory for optimization problems with interval-valued objective functions[J]. J. Optim. Theory Appl., 2010, 144: 615-628.
[10] Wu H C. Wolfe duality for interval-valued optimization[J]. J. Optim. Theory Appl., 2008, 138: 497-509.
[11] Wu H C. On interval-valued nonlinear programming problems[J]. J. Math. Anal. Appl., 2008, 338: 299-316.
[12] Zhou H C, Wang Y J. Optimality condition and mixed duality for interval-valued optimization[J].Fuzzy Info. and Eng., AISC, 2009, 62: 1315-1323.
[13] Sun Y H, Wang L S. Saddle-point type optimality for interval-valued programming[C].Proc. Int. Conf. Uncertainty Reasoning Knowl. Eng., URKE, 2012, 8: 252-255.
[14] Mandal P, Nahak C. Symmetric duality with(p,r)-ρ-(η,θ)-invexity[J]. Appl. Math. Comput., 2011, 217: 8141-8148.
[15] Bazaraa M S, Sherali H D, Shetty C M. Nonlinear programming: Theory and algorithms[M]. Third Edition. New York: Wiley-Interscience, 2006. |