运筹与管理 ›› 2014, Vol. 23 ›› Issue (1): 39-43.

• 理论分析与方法探讨 • 上一篇    下一篇

区间规划问题的最优性条件

孙玉华1, 许平1, 王来生2   

  1. 1.北京科技大学 数理学院,北京 100083;
    2.中国农业大学 理学院,北京 100083
  • 收稿日期:2012-03-02 出版日期:2014-01-25
  • 作者简介:孙玉华,女,博士,副教授;王来生,男,博士,教授。
  • 基金资助:
    国家自然科学基金资助项目(11271367)

Optimality Conditions for Interval-Valued Programming

SUN Yu-hua1,2, XU Ping1, WANG Lai-sheng2   

  1. 1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
    2. College of Science, China Agricultural University, Beijing 100083, China
  • Received:2012-03-02 Online:2014-01-25

摘要: 区间规划是带有区间参数的规划问题,是一种更易于求解实际问题的柔性规划。它是确定性优化问题的延伸,有区间线性规划和区间非线性规划两种形式。本文讨论了目标函数是区间函数的区间非线性问题。给出了区间规划问题最优性必要条件的较简单证明方法,并利用LU最优解的概念,在一类广义凸函数-(p,r)-ρ-(η,θ)-不变凸函数定义下讨论了最优性充分条件。

关键词: 不确定优化, 区间规划, 最优性条件, (p,r)-ρ-(η,θ)-不变凸函数。

Abstract: The programming with interval coefficients is called interval programming, which is flexible programming to easily solve some optimization problems. Interval programming can be regarded as an extension of deterministic optimization problems. There are two kinds of interval programming: interval linear programming and interval nonlinear programming. In this paper, we discuss interval-valued programming where the objective function is an interval-valued function. The necessary optimality conditions are established for a feasible point to LU optimal solution, and the sufficient optimality conditions are obtained under(p,r)-ρ-(η,θ)- invexity assumptions on objective and the constraint functions.

Key words: uncertain optimization, interval-valued programming, optimality conditions, (p,r)-ρ-(η,θ)-invexity functions.

中图分类号: