[1] Demeulemeester E L, Herrlelen W S. Project scheduling[M]. Boston: Kluwer Academic Publishers, 2002, 17-48. [2] Michael D J, Kamburowski J, Stallman M. On minimum dummy arc problem[J]. Operations Research, 1993, 27(2): 153-168. [3] Elmaghraby S E, Kamburowski J. On project representation and activity floats[J]. Arabian Journal of Science and Engineering, 1990, 15: 627-637. [4] Elmaghraby S E. Activity nets: a guided tour through some recent developments[J]. European Journal of Operational Research, 1995, 82: 383-408. [5] Elmaghraby S E. Activity networks: project planning and control by network models[M]. New York: John Wiley & Sons Inc., 1977. [6] 王强,李星梅,乞建勋.双代号网络图中虚工序对时差计算公式的影响与修正[J].系统工程理论与实践,2008,(6):106-114. [7] 王佳,李星梅,乞建勋.基于机动时间的平行序链顺序优化算法设计[J].系统工程学报,2008,23(04):455-461. [8] Yakhchali S H, Ghodsypour Seyed Hassan. Computing latest starting times of activities in interval-valued networks with minimal time lags[J]. European Journal of Operational Research, 2010, 200(3): 874-880. [9] Elmaghraby S E. On criticality and sentivity in activity networks[J]. European Journal of Operational Research, 2000, 127: 220-238. [10] Kastor A, Sirakoulis K. The effectiveness of resource levelling tools for resource constraint project scheduling problem[J]. International Journal of Project Management, 2009, 27(5): 493-500. [11] Z. Karaca, Onargan T. The application of critical path method(CPM)in workflow schema of marble processing plants[J]. Materials and Manufacturing Processes, 2007, 22(1): 37-44. [12] Rodder W. A generalized saddlepoint theory; its application to duality theory for linear vector optimum problems[J]. European Journal of Operational Researh, 1977, 1(1): 55-59. [13] 李星梅,乞建勋,苏志雄.双代号网络计划中工序机动时间蔓延性研究[J].系统工程学报,2009,24(1):39-45. [14] 苏志雄,李星梅,乞建勋.双代号网络计划中工序机动时间传递性研究[J].工业工程与管理,2009,14(4):60-66. [15] 李星梅,乞建勋,苏志雄.路线机动时间守恒与CPM网络机动时间不守恒理论[J].系统管理学报,2008,17(2):235-240. [16] 乞建勋,李星梅,王强.等效子网络的理论与方法[J].管理科学学报,2010,13(1):40-44. [17] 李星梅,乞建勋,苏志雄.自由时差定理与k阶次关键路线的求法[J].管理科学学报,2009,12(2):98-104. |